Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization.

نویسندگان

  • Supriya G Prasanth
  • Zhen Shen
  • Kannanganattu V Prasanth
  • Bruce Stillman
چکیده

The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) alpha- and HP1beta-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1alpha, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1alpha; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1alpha association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1alpha distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1alpha from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1alpha-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Cytoplasmic and Nuclear Fractions of Drosophila Heterochromatin Protein 1: Their Phosphorylation Levels and Associations with Origin Recognition Complex Proteins

The distinct structural properties of heterochromatin accommodate a diverse group of vital chromosome functions, yet we have only rudimentary molecular details of its structure. A powerful tool in the analyses of its structure in Drosophila has been a group of mutations that reverse the repressive effect of heterochromatin on the expression of a gene placed next to it ectopically. Several genes...

متن کامل

Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions

Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a fa...

متن کامل

Association of the Origin Recognition Complex with Heterochromatin and HP1 in Higher Eukaryotes

The origin recognition complex (ORC) is required to initiate eukaryotic DNA replication and also engages in transcriptional silencing in S. cerevisiae. We observed a striking preferential but not exclusive association of Drosophila ORC2 with heterochromatin on interphase and mitotic chromosomes. HP1, a heterochromatin-localized protein required for position effect variegation (PEV), colocalized...

متن کامل

HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain.

We have isolated the complete coding sequences for two Xenopus laevis isoforms of heterochromatin protein 1, corresponding to HP1alpha and HP1gamma. The sequence of xHP1alpha shows considerable divergence from its mammalian homologues, whereas xHP1gamma is highly conserved. Functionally, xHP1alpha behaves identically to human HP1alpha. We observe unexpected differences between the two HP1 varia...

متن کامل

Subnuclear distribution of the largest subunit of the human origin recognition complex during the cell cycle.

In eukaryotes, initiation of DNA replication requires the activity of the origin recognition complex (ORC). The largest subunit of this complex, Orc1p, has a critical role in this activity. Here we have studied the subnuclear distribution of the overexpressed human Orc1p during the cell cycle. Orc1p is progressively degraded during S-phase according to a spatio-temporal program and it never col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 34  شماره 

صفحات  -

تاریخ انتشار 2010